Search results for "helix packing"

showing 4 items of 4 documents

The role of hydrophobic matching on transmembrane helix packing in cells

2017

Folding and packing of membrane proteins are highly influenced by the lipidic component of the membrane. Here, we explore how the hydrophobic mismatch (the difference between the hydrophobic span of a transmembrane protein region and the hydrophobic thickness of the lipid membrane around the protein) influences transmembrane helix packing in a cellular environment. Using a ToxRED assay in Escherichia coli and a Bimolecular Fluorescent Complementation approach in human-derived cells complemented by atomistic molecular dynamics simulations we analyzed the dimerization of Glycophorin A derived transmembrane segments. We concluded that, biological membranes can accommodate transmembrane homo-di…

Cancer ResearchPhysiologyCèl·luleslcsh:Medicine010402 general chemistry114 Physical sciences01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)03 medical and health sciencesHydrophobic mismatchhydrophobic matchhelix packingLipid bilayerlcsh:QH301-705.5030304 developmental biology0303 health sciencesChemistrylcsh:RGlycophorin AProteïnes de membranaGlycophorin ABiological membranetransmembrane domain dimerizationmembrane protein foldingTransmembrane protein0104 chemical sciencesFolding (chemistry)Transmembrane domainMembranelcsh:Biology (General)Membrane proteinBiophysicsMolecular MedicinemismatchResearch ArticleCell Stress
researchProduct

Mcl-1 and Bok transmembrane domains : Unexpected players in the modulation of apoptosis

2020

The Bcl-2 protein family comprises both proand antiapoptotic members that control the permeabilization of the mitochondrial outer membrane, a crucial step in the modulation of apoptosis. Recent research has demonstrated that the carboxyl-terminal transmembrane domain (TMD) of some Bcl-2 protein family mem-bers can modulate apoptosis; however, the transmembrane interactome of the antiapoptotic protein Mcl-1 remains largely unexplored. Here, we demonstrate that the Mcl-1 TMD forms homooligomers in the mitochondrial membrane, competes with full-length Mcl-1 protein with regards to its antiapoptotic function, and induces cell death in a Bok-dependent manner. While the Bok TMD oligomers locate p…

0301 basic medicineProtein familyMitochondrionBCL-X(L)Endoplasmic ReticulumInteractome114 Physical sciences03 medical and health sciencesBok0302 clinical medicineProtein DomainsMITOCHONDRIAhemic and lymphatic diseasesAnimalsHumansBcl-2Inner mitochondrial membraneMultidisciplinaryCell DeathChemistryEndoplasmic reticulumapoptosisMcl-1PATHWAYSLOCALIZATIONBiological SciencesTransmembrane protein3. Good healthCell biologytransmembraneTransmembrane domainstomatognathic diseasesGLYCOPHORIN-A DIMERIZATION030104 developmental biologyHELIX PACKINGProto-Oncogene Proteins c-bcl-2BAX030220 oncology & carcinogenesisMitochondrial MembranesPROSURVIVAL BCL-2 PROTEINSMOTIFSURVIVALMyeloid Cell Leukemia Sequence 1 Protein1182 Biochemistry cell and molecular biologyBacterial outer membraneHeLa Cells
researchProduct

Viroporins, Examples of the Two-Stage Membrane Protein Folding Model

2015

Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding …

influenza A virus M2Protein Foldingviroporinslcsh:QR1-502ReviewBiologyhelix-helix packinglcsh:MicrobiologyCell membraneViral ProteinsVirologymedicinetransmembrane protein foldingAnimalsHumansmembrane insertionLipid bilayerCell MembraneVirologyTransmembrane proteinVirusFolding (chemistry)Transmembrane domainGenòmicaInfectious DiseasesMembranemedicine.anatomical_structureMembrane proteinVirus DiseasesVirusesBiophysicsProtein foldingProteïnesGenètica
researchProduct

Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif

2005

AbstractThe principles that govern the folding and packing of membrane proteins are still not completely understood. In the present work, we have revisited the glycophorin A (GpA) dimerisation motif that mediates transmembrane (TM) helix association, one of the best-suited models of membrane protein oligomerisation. By using artificial polyleucine TM segments we have demonstrated in this study that a pattern of only five amino acids (GVxxGVxxT) promotes specific dimerisation. Further, we have used this minimised GpA motif to assess the influence of hydrophobic matching on the TM helix packing process in detergent micelles and found that this factor modulates helix–helix association and/or d…

Protein FoldingRecombinant Fusion ProteinsAmino Acid MotifsMolecular Sequence DataBiophysicsBiochemistryMicelleHydrophobic mismatchHydrophobic mismatchStructural BiologyLeucineHelix packingGeneticsGlycophorinAnimalsHumansAmino Acid SequenceGlycophorinsMolecular BiologyPolyacrylamide gel electrophoresischemistry.chemical_classificationbiologyChemistryGlycophorin AProteïnes de membranaMembrane ProteinsMembrane protein associationCell BiologyTransmembrane proteinAmino acidTransmembrane domainBiochemistryMembrane proteinMutationTransmembrane helixBiophysicsbiology.proteinPeptidesDimerizationHydrophobic and Hydrophilic Interactions
researchProduct